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An analysis is made of the stresses in the skin of an inflated

nonstretchable sphere during normal, nonrotating impact with a hard flat

surface, assuming infinite modulus of elasticity in the skin and infinite

propagation speed of stress waves. The analysis is further applied to the

study of the inflated sphere landing vehicle containing a payload suspended

at the center. Curves are presented shoving the stress distributions

during impact for cases corresponding to those calculated in previous

reports in which the impact motion and payload landing performance
capabilities of the landing vehicle have been studied.

It is found, assuming the force from the payload-suspension cords to

be distributed continuously on the skin, that is_ neglecting stress con-

centrations, that the skin stresses along a meridian are reduced by the

presence of the suspended payload during impact, but _ that the maximum

values of skin stress normal to a meridian are little affected.

INTRODUCTION

The use of an inflated sphere _-ith a centrally supported payload

package as a device for cushioning the high-speed impact of a payload has

been studied in references i to 3- The impact motion and payload-landing

performance were analyzed in reference i. In reference 2 the internal-gas
wave motion was studied and the effects of wave motion were shown to be

important when the square of the ratio of impact velocity to speed of

sound in the gas is not small. In reference 3, the payload-landing per-

formance was calculated including consideration of the required mass of

payload-suspension cords. These studies (refs. I to 3) indicated that in

principle the use of an inflated sphere with the payload suspended at its

center could, in fact, attenuate the impact acceleration to vithin allow-

able limits for hard landing of payloads. Impact velocities in the range

from 500 to I000 feet per second could be handled with maximum accelera-

tions of the order of only several thousand g's for a sphere with a radius
of the order of i0 feet (ref. 3).
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In the previous studies of inflated-sphere impact the skin-stress
distributions were not considered. Calculations were madebased on am
initial skin stress with the presumption that the subsequent stresses
during the impact would not exceed the allowable ultimate value. However,
precise information on maximumvalues of skin stresses during impact for
various design conditions would be needed in an actual design.

Whenone considers the ramifications of the elastic wave phenomena
and stress concentrations involved in an analysis of the stresses accom-
panying the impact motion of an actual vehicle of the type being studied,
the complexity of the problem becomesevident. It is the purpose of this
investigation to showthe development of the stresses and their distribu-
tion during an impact with simplifications to allow a solution of the
problem. Hopefully, the results will showthe main features of the
problem and will form a background for more detailed design studies, and
mayalso serve as a guide in designing experiments to examine critical
areas.

An analysis of the stresses in two directions at any point in the
skin during the impact is presented. The various assumptions and approx-
imations used are discussed prior to proceeding with the analysis. Results
are showncorresponding to those of design cases calculated in previous
reports, including cases in which there is no centrally supported payload
and cases in which a payload is suspendedin the center by cords. For
the cases of centrally supported payloads, information concerning the
cord-force distributions is also presented.
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SYMBOLS

day
acceleration of the sphere center;

dt2

r
a

Ul 2

specific heat of the inflating gas at constant volume

area of differential skin element, ABCD (See sketch (c).)

cord force distribution (eq. (26))

gravitational acceleration on the earth, 32.17 ft/sec 2

proportionality constant (constant in e but variable with time)

for cord force distribution in e* <_ e <_ _ (See eqs. (39).)

total mass of the system
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Ca,

@

e*

mass of a particular part of the system, depending on the subscript

number of earth g's maximum acceleration

pressure of the inflating gas

PaPl, pressure of the atmosphere outside the sphere

7cp I, force per unit area from the payload-suspension cords
attached to the skin

Pl

radius of the sphere

temperature of the inflating gas

t line

velocity of the sphere center, d-x
dt

U

lull

distance from the impact surface to the sphere center

Y
r

defined by equation (29)

arc (-y)

ratio of specific heats of the inflating gas

thickness of the sphere skin

functions of _; defined by equations (34) and (35)

azimthal angle from the top of the impacting sphere

highest value of e for which _e has become zero at a given
time

defined by equation (27)

initial energy ratio, mgcvTl
i

mLll 2

mass density
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stress

skin stress in the direction along a meridian

skin stress normal to a meridian

force in one payload-suspension cord at the sphere skin

polar angle (longitudinal coordinate)

value at @ = e*

Subscripts

o

i

2

c

g

P

s

v

value at @ = 0

condition at the first instant of impact

condition at maximum compression of the gas which occurs when the

velocity is zero

payload-suspension cords

inflating gas

centrally supported payload package

sphere skin

portion in motion with velocity u

ANALYSIS

Assumptions and Approximations

In the calculation of the impact motion of a_ inflated sphere membrane

(refs. I to 3), a normal i_wpact with no rotation is assumed. The "uniform

gas" approximation for the internal gas pressure, which was used and

discussed in reference I, is retained in this analysis. Therefore, the

internal gas pressure is a function only of time. The outside pressure

is assumed to be const_ut at the value Pa"

It is assumed that the skin is flexible end nonstretchable. Then it

is assumed that the part of the sphere skin not in contact with the impact

surface retains its spherical shape (see ref. I).
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Also, because the skin material is assumed to be nonstretchable and

thus to have an infinite modulus of elasticity, changes in stress due to

the relaxation of stress in the meridional direction at the "impact circle"

(8 = _) will propagate through the skin material infinitely fast in com-

parison to the impact speed. Therefore it is assumed that the effects of

stress waves are negligible.

"Membrane theory" of shells is assumed to apply in the analysis of

the skin stresses; moreover, it is assumed that the material cannot main-

tain compressive stresses. This is considered to be a very reasonable

assumption for flexible materials, such as fabrics.

As in the prior analyses (ref. 3), the payload suspension cords are

also assumed to be flexible and to have a very high modulus of elasticity.
Therefore the parts of the cords in motion are assumed to have the same

velocity as the sphere center.

The use of a large number of payload suspension cords is assumed,

and the effects of stress concentrations due to cord attachments are neg-

lected. The force from the cords is therefore assumed to be applied

continuously over the skin surface. In the practical case the neglect of

skin-stress concentrations may not be entirely realistic. Nevertheless,

as the number of cords is increased, the assumed condition is approached.
The use of the assumption of continuous force distribution enables one to

estimate stresses, how the stresses change during impact, and where the

maximum stresses will occur when the cords and payload are present.

Calculation of Skin Stresses

Equations for skin stress along a meridian, _e, and skin stress

normal to a meridian, _.- Although several derivations of equations for

stress in a spherical membrane can be found in the literature (e.g.,
refs. 4 and 5), brief, simple deriva-

tions are given here of the appropri-

ate dynamic equations for the applica-

tion to the particular type of motion

of immediate concern. The tensile

stress in the skin along a meridian

(the meridian plane being perpendicu-

lar to the impact surface) is denoted

as _@. The tensile stress in the

skin normal to a meridian is denoted

as _9 (see sketch (a)). The coordi-

nates e sad _ are, respectively,

the azimuthal angle (latitudinal

coordinate) and the polar angle

Sketch (a)
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(longitudinal coordinate). This notation is used for convenience in

relating the present study to the previous studies of the inflated sphere

landing vehicle in references i and 3-

The stress equations are derived by applying Newton's second law of

motion to various elements and portions of the sphere skin. The stresses

_8 and d_ will thus be obtained in terms of the skin properties, the
acceleration of the sphere, and the force per unit area on the skin

surface.

The meridional stress, dS, can be most easily found by taking as the

free body, to which Newton's law is applied, the portion of the skin

P
included between the pole, point P

on sketch (b), and the angle @ (i.e.,

the shaded portion on sketch (b)),

because _8 is the only stress normal
to the boundary of this free body.

If the mass of this portion of skin

is denoted as m_, then

= 2  p 5(I - cose) (1)

Newton's law for the vertical motion

of m e is then

A
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Sket ch (b) mea = F_8 - Fce - Fo_ (2)

where a is the acceleration of the skin and of the sphere center, and

where -Fp9 , Fc8 , and Fo_ are the downward vertical forces on me due,
respectively, to external and internal gas pressures, to the payload

suspension cords (in the case of centrally supported payload), and to the

skin stress _e" These forces are given, respectively, by:

re

Fp8 =]o [(p - Pa) C°S 9][2_(r sin 8)r de] : _r_(p - Pa)sin29
(3)

where p is assumed uniform over @ and Pa is constant,

Fc0 = 2_r2 Pc sin e cos 8 d8
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where Pc is the force per unit area from the cords attached to the
skin, and

Fd8 = 2_r5o_ sin2@

Equation (2) then becomes

d8 _ (Pzrh _ - Pa u za[

Ps \Ps6/ 2 1 + cos e _o 8
(Plr_ 1 Pc sin8 cos8 @9
kPsS/ sin28

(6)

To find o_, the skin stress normal to a meridional plane, Newton's
law may be written for the motion in the radial direction of the element

of skin ABCD, bounded by the two meridians at _ - (I/2)d_ and _ + (i/2)d_$r,

and by the two parallel circles at 8 - (i/2)d_ and e + (1/2)@9 (see

sketch (c)). The lengths of the edges of this element are

Sketch (c)
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BC = r sin - _ d9 d,_'
\

CD = r d_

DA = r sin +

(7)

and the stresses in the skin acting normal to these edges are, respectively,

II,/2)d@@, @%r- (i/2)d_9, and {@ + (I/2)do@. The+ - ",
components of these stresses acting toward the sphere center are,

respectively,

(e)

A
4

7
1

Therefore the radial force on the element ABCD due to the skin stresses is

Fg : -(_s_35 + B_sBc_ + C_sCD 5 + D_SDA_ ) (9)

The force per unit area normal to the skin surface is P - Pa - Pc" The
surface area of the skin element is

dS = rasin @ d_ d_$r (lo)

and hence the radial force on the elemental surface due to gas pressure

s_d cord forces is (p - Pa - Pc )dS" The mass of the skin element is

ps 8 dS and its radial acceleration is (du/dt)cos _. Newton's law for the

radial motion of the element of skin ABCD then takes the form
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du
Ds5 dS _ cos @ -- P - Pa - Pc )dS + F_ (11)
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Equation (ii), along "with (7), (8), 9), and (i0), and the expressions

<})lsin d_ --_ d8

<}sin sin e d = _ sin e d9

in equations (8) then lead to the following result:

d@ d% (P - Pa - Pc )dS du

-£- + -9--= $ dS - Ps _ cos

radial surface force

unit volume

radial acceleration force
+

unit volume

(12)

which is similar to familiar forms of the membrane-shell equation for a

sphere as found in the literature. For present purposes_ the following

more convenient form may be written:

d@ _ _pzr_ (P - Pa ) _ _pzr_ Pc - u12_ cos @ Ps
Ps \OsS/ \Ps$/

(13)

The two equations, (6) and (13), may then be used to calculate o8

and d9 at any e and at any time during the impact (where P - Pa and

are functions of time and Pc is a function of e and time). For

the purpose of calculating _ and _9 corresponding to the numerical
results calculated previously in references I and 3, equations (6) and

(13) may be related to some expressions derived previously. The equation

of motion used in references I and 3 is

= 3(7 - 1)_ <__># (1 - y2)(_ _ _a) (m_)

where

< 7P - 9a = e + 3Y - ya - Pa (15)
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my = mp + [ ms(l + Y) + racy (16)

and

= mgcvT_. (17)
(1/2)mu__

The quantity mcv is the part of the mass of the payload suspension cords

in motion with velocity u = dy/dt. In reference i mcv was neglected

or assumed to be zero; in the text and appendix of reference 3 expressions

for mcv as functions of _ were derived for the cases of constant-area

cords and exponentially tapered cords, respectively. An expression for

the gas pressure term in equations (6) and (13) may be obtained by putting

equation (14) into the form:

p&J 7 -
(18)

Thus equations (6) and (13) may be written:

Ps u12_ " -I _s + cos e sina8 \psS/ Pc sin (9 cos (9 c]J9

(19)

- (2o)

Skin stresses for case of s_here without _ayload.- In the case of an

inflated nonstretchable sphere membrane containing only the inflating gas

and no centrally supported payload (but possibly having instrumentation

printed on and/or attached to the skin, which is taken into account in

determining Ps), equations (19) and (20) may be used by setting Pc

identically to zero. Thus

=o i : _ -

mC=O

i _] (21)+ cos e

and

<_S/mp:O_crg-_ I F_,[\ .4_)u 2_ l= _ -

mc=o

 os01-< ;m :o
mc=O
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The results from reference I for mp= 0 maybe used in the calculation,
since

=l(l+y) (23)=O 2

mc=o

Distribution of cord forces on the skin and skin stresses in s_here

containing centrally supported payload.- In the cases of impact of the

sphere landing vehicle with centrally supported payload, the terms in

equations (19) and (20) representing the forces from the suspension cords

on the skin remain to be determined. For some cases the cord-force dis-

tribution is directly related to, and coupled with, the skin-stress dis-

tribution. This relationship must therefore also be derived. As a result

of this derivation, the parameter _, which represents the integrated

effect of the cord-force distribution over the sphere, and in terms of

which the results in the previous studies (ref. 3, text and appendix) were

found, will then be determined.

The force in one cord at _ = r (at the skin) is denoted in the text

of reference 3 by the symbol M- In the appendix of reference 3, the

symbol M' is used to denote the force in one cord as a function of radial

distance 0- Let Mr denote either the M of reference 3 or the value

of M' at q = r in the appendix of reference 3- The quantity of

interest in the equations is

_Plr_ Pc _plr_ / NcMr h _r_
\psS/ = \psS/\ S -- \ms/ Nc%

(24)

where N c is the total number of payload suspension cords attached to

the skin and hence Nc/4_r2 is the number per unit area. The forces in

the cords are assumed to be zero before impact. It was shown in the text

and appendix of reference 3, for constant-area and exponentially tapered

cords, respectively, that

NcM r = (_) (rap + mcv)af (25)

where f is the cord-force distribution over e:

f = Mr._.r._ (26)
Mro

and where _ is defined by

_o _/2
= f sin 8 cos 8 d_ (27)
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Combining equations (24) and (0_5) and making use also of equation (16)

then yield the result

kpsS/ \ 2 u
(2_)

After substitution of equstion (25) and defining

z = f sin e cos @ d_ (2o)

the stress equations, (19) and (20), become

+ cos 0 sin20 - _- _,
(so)

A

4

7
1

Values of ms/m, uz, and the functions mv//m and =_, which depend on _,

have been calculated previously for several cases in reference 3. The

quantities f, z, and i: in equations (30) and (31) are, as yet, undeter-

mined for the general c_:.se. It is shown in reference 3 that, as long as

(ds) o remains greater than zero, f is given by

(%) > o]f = cos_ , [0<0 <_, o

f = 0 ,

The condition that a s

in equation (30), where

be greater than zero at

2_a -i:S{ b > t

/ l
{_{ : _a(_) : (

2

I -_/ms,\

(s2)

0 : 0 requmres that

(33)
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and

_b = _b(_)mY _ .I + _)= ms 2 (35)

Therefore, if the inequality (33) is satisfied, then equations (27), (29),

and (32) give the following expressions which may be used in equations

(30) _nd (31) for complete evaluation of de/ps and 8$/Ps over e at a
given value of _:

For (_S)o > 0 ,

f
-= 3 cos e

f=o
m

z
--= i - cos3_ ,

Z

i

3

}

where

= arc cos(-y) (37)

For all cases, for some period of time at the beginning of the

impact, (ds) o > 0 so that the inequality (33) holds, and equations (36)
may be used in (30) and (31). In some cases this condition will exist

until t = t2, and thus gm will have the value 1/3. For other cases,

because the maximum force per unit area, or "pressure" from the cords

occurs at @ = 0 (eqs. (32)), the skin stress at @ = 0 may be reduced to

zero at some time during the impact as the acceleration increases. As

explained in reference 3, before (gS)o becomes zero the upper hemisphere

can be considered to be a rigid shell because it does not flex, and the

cord-force distribution is not affected by the skin stresses; but, after
(ds) o becomes zero, the upper hemisphere can no longer be considered to

be entirely a rigid shell. The cord-force distribution then changes so

that (ds) o remains zero and does not become negative. As the acceleration

increases further after the first instant that (ds) o has become zero, the

meridlonal stress in the skin a small distance from e = 0 also becomes

zero. But (ds) o must remain at zero because if the stress became negative,

the skin would flex, thus reducing the cord force, and the cause of the

reduction in skin stress would be removed. Thus the region of zero
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meridiona! skin stress grows with increase in acceleration but keeps its

spherical shape. At all points in the upper hemisphere where the skin

stress is still greater than zero, the skin can still be considered to be

a nonflexing rigid shell, and the forces in the cords continue to be dis-

tributed proportional to cos 8 because of the assumption of high modulus

of elasticity in the skin (see ref. 3)- Denote 0" as the highest value

of 8 for which the meridional skin stress, 08, has become zero. Then,

after (ds) o has become zero,

d8 = 0 in 0 <_.e < 8* (38)

but

o8 > 0 in 8"<8 < _

and, as explained above,

f = K cos 8

f = 0 for

in 0*<_e <_.

@>2

(39)

Condition (38) will be used to find f in (0 4 8 4 8"). Both 8*

and K are as yet undetermined; therefore another condition is needed

along with equations (39) to determine @* and K. It is the condition of

continuity of f at 8 = 8", which can be reasoned as follows: During

the impact the acceleration increases continuously with time, causing the

cord forces to increase continuously thus reducing the skin stress, 08, at

a point continuously until it becomes zero; that is, until 8" reaches

that point. Therefore o8 is also continuous over @ at 8" and hence,

considering equation (30),

f is continuous at 8 = 8* (40)

To find f in 0 _ 8 _ 8*, substitute condition (3 8) into equation

(3o). _hus

z = O
{a sin_9 - I + cos 8 - 2{b (_l)

where {a and _b are given by equations (34) and (35). Equation (41)

may then be differentiated with respect to 8 to obtain:

= __!a_ , i , (0 < 8 < 8") (42a)

{b 2_ b cos 8 -- --

A

4
7
i
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Directly from equation (41) can be obtained:

Z _a - l--l--(I - cos 8) ,
= 2_--_sin2e 2_ b

(o < e < e*) (42b)

As noted above, equations (39) and condition (40) will be used to

evaluate e* and K for use in the interval e* < e < (_/2). An expression

for K/k can be obtained by applying condition V40)--to equations (39) and
(42a):

K _a i

_b cos 8"

1

2_b cosa@ *

(43)

A second expression for K/_ can be found by wrlting equation (27) as

l_:la f_o e* f sin e cos e dR + sin e cos e de (44)

and by substituting into this equations (39) and (42a). Thus

K_ _-----[i _a 1 (i _ cos e.)]cos3e*- sln *+2q7 (45)

Equations (43) and (45) may then, of course, be combined to solve for

e* as the angle whose cosine is

cos e* = _a i + - -
(46)

The value of K/_ is determined by substituting equation (46) into (43).

The quantities of interest in the stress equation are f/_ and z/_. From
equations (39),

f= K--cos e,_ W <e*<e <,._)_ _ (47)

where K/_ is known from equations (43) and (46). From equation (29),

z = + _ sin e cos e dR
.

(48)
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where, from equation (42b),

z/:__ _
= 2_-_sine°* - --2_b (l - cos e

_)\7/ (49)

Substitution of equation (47) into equation (48) gives the result

z = + ! (cos3e* - cope)
3 k_/ ' (%_ < e < _> (5o)

In the interval

of course,

_/2 < @ < _ the expressions for f/_ and z/> are,

-= 1 , <e < (51b)

It remains to determine b for the cases in which (ds) o

zero. By definition, the value of f at e = 0 is

becomes

A

4
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Thus

fo = I (52)

fo I
= (53)

= (f/_)o (f/_)o

The result of substituting equation (42a) into (53) is

_b

- Ca -(i/2)' [(%)0 = O] (54)

The parameter K is then determined from equations (43) and (54):

K - _ _ (z/2)\oos e-_ - h oos_e
(55)

To summarize the above development: If, at a given time or given

value of _, the inequality (33) is satisfied, then (_s)o > O, _ = 1/3,

and f/> and z/_ are given by equations (36). If the inequality (33) is

not satisfied, then (ds) o = O, p is given by equation (54), 8" is found
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from equation (46), K/_ from (43), and f/_ and z/_ are given by

equations (42a), (42b), (47), (49), (50), (51a), and (51b). Thus equations

(30) and (31) are now completely determined and an expression for the
parameter _ has been derived.

DISCUSSION OF RESULTS

The complete distribution of skin stress in the 8 and _ directions

at all points in the skin and at all times during the impact can be

obtained from the equations derived in the preceding analysis, both for

cases in which there is no centrally supported payload and for cases in

which a payload is suspended by radial cords. It is easily shown from

equation (30) for oS/ps that, at 8 = _, o8 is identically zero. This

exhibits the fact that there can be no tensile stress along a meridian in

the skin at the part of the skin in contact with the ground where the

collapse is taking place. It can also be demonstrated by combining the

expressions for oS/Ds and ot/ps (eqs. (30) and (31)) that at @ = O,

o8 = _9. At 8 = 0, of course, the stress has the same value in any
direction tangent to the skin.

The distribution of skin stress along a meridian, _e, over e at

different times during the impact is shown for five different cases in

figure I. These cases correspond to specific cases for which the impact

motion was calculated in previous studies. For the case of no centrally

supported payload (fig. l(a)), after the first instant of impact _8 is

highest at 8 = 0 and is zero at 8 = _. As 7 decreases from 1.0 to

_2 (_2 = 0 in this case), (OS/Ps)@_o first decreases from 106 ft2/sec2_

then increases to 1.329×106 ft2/sec Z. In figures l(b) through (e) are

shown four cases for which a payload is centrally suspended by cords. In

these cases it is seen that o8 decreases at all points as the impact
progresses. 0bviously_ one effect of the cord forces is to decrease the

force per unit area acting normal to the skin and thus to decrease the

stress in the skin, at least in the vertical, or meridional, plane.

Figure 2 shows the distribution of skin stress normal to a meridian_

_9' over 8 at various times during the impact for the same cases plotted

in figure i. It is seen that the maxlmumvalue of o4 in the sphere

occurs adjacent to the part of the skin which is collapsing, that is, at

8 = _, and the maximum in time occurs at the end of the impact, when

= _2, for all cases, whether or not there is a payload suspended at the

center. Although the maximum values of o9 are evidently not too greatly

affected by the magnitude of mp/m, or by whether or not a suspended

payload is present, they are affected by varying Y2.

The maximum stress for a given case is in the 9 direction (normal

to a meridian) at 8 = _ and at y = Y2. Values of (_/oSl)8=_,_=ya- are



18

shown in figure 3 for spheres containing constant-area cords for various

design cases corresponding to u_, as calculated in reference 3 (part (a)

only). The calculations for figure 3 were made from the following

equation, which is derived from equation (31) with the conditions _ = _2,

e = _, and using the fact that when _ = _2, ul 2_ = (nr)ge:

_ = (nr)ge 1 - ms

Y=Y2

Evidently the maximnm values of _s can be quite high -- as high as 5.6

times the initial skin stress -for _2 = 0 (fig. 3). The maximnm value

of _s is significantly reduced by having _2 greater than zero.

As pointed out earlier_ the skin-stress distributions and the cord-

force distributions are interdependent. Therefore, in the process of

solving the skin-stress distributions, the cord-force distributions have

also been determined. In figure 4 are presented examples of the cord-

force distributions over e when _ = _m for four of the design cases

used in figures 1 and 2, and also for those cases in which the skin stress

at e = 0 never reaches zero, that is, the cases where f is a cosine

function for the entire process_ with the result that _2 = 1/3. In

figure 5 the values of _m_ for the same cases for which maximum stresses

were calculated in figure 3(a)_ are given. From these values of _a and

the values of _a(_ca/0c) for which the design parameters were calculated

can be found the appropriate values of qca/D c. It is observed from

figure 5 that, for those cases where mp/m is high, We actually does

approach the value 1/2, as was reasoned physically in reference 3.

A
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CONCLUDING REMARKS

It has been shown that the maximum skin stress in a nonstretchable

inflated sphere during impact occurs in a direction normal to a meridian

at the impact circle -- that is, adjacent to the part of the skin which is

collapsing -- at the instant of maxinmun compression of the gas and maximnm

acceleration of the sphere. The maximum stress depends mainly on the

initial stress, and on the final volume ratio of the impacting sphere (for

no outside atmospheric pressure). When the sphere compresses to a hemi-

sphere, the maximum stress can be five times as large as the initial stress

for the cases considered.

The distributions of stress in the meridional direction and stress

normal to a meridian over the sphere are affected by the suspension of a

payload at the center of the sphere. When the distribution of force per

unit area due to the payload suspension cords is assumed to be continuous

over the skin r the skin stress along a meridian is found to be greatly

decreased in many cases by the effect of the cord forces. Although the
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shape of the distribution curve of stress normal to a meridian is changed

by the presence of a centrally supported payload, the maximum value is
little affected.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field_ Calif._ June 9, 1961
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